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Abstract

In 1994, Y. Mansour conjectured that for every DNF formula on n variables with t terms there exists
a polynomial p with tO(log(1/ε)) non-zero coefficients such that Ex∈{0,1}n [(p(x) − f(x))2] ≤ ε.
We make the first progress on this conjecture and show that it is true for several natural subclasses
of DNF formulas including randomly chosen DNF formulas and read-k DNF formulas for constant
k.

Our result yields the first polynomial-time query algorithm for agnostically learning these sub-
classes of DNF formulas with respect to the uniform distribution on {0, 1}n (for any constant error
parameter).

Applying recent work on sandwiching polynomials, our results imply that a t−O(log 1/ε)-biased
distribution fools the above subclasses of DNF formulas. This gives pseudorandom generators for
these subclasses with shorter seed length than all previous work.

1 Introduction
Let f : {0, 1}n → {0, 1} be a DNF formula, i.e., a function of the form T1 ∨ · · · ∨ Tt where each Ti is a
conjunction of at most n literals. In this paper we are concerned with the following question: How well can a
real-valued polynomial p approximate the Boolean function f? This is an important problem in computational
learning theory, as real-valued polynomials play a critical role in developing learning algorithms for DNF
formulas.

Over the last twenty years, considerable work has gone into finding polynomials p with certain properties
(e.g., low-degree, sparse) such that

E
x∈{0,1}n

[(p(x)− f(x))2] ≤ ε.

In 1989, Linial et al. (1993) were the first to prove that for any t-term DNF formula f , there exists
a polynomial p : {0, 1}n → R of degree O(log(t/ε)2) such that Ex∈{0,1}n [(p(x) − f(x))2] ≤ ε. They
showed that this type of approximation implies a quasipolynomial-time algorithm for PAC learning DNF
formulas with respect to the uniform distribution. Kalai et al. (2008) observed that this fact actually implies
something stronger, namely a quasipolynomial-time agnostic learning algorithm for learning DNF formulas
(with respect to the uniform distribution). Additionally, the above approximation was used in recent work
due to Bazzi (2007) and Razborov (2008) to show that bounded independence fools DNF formulas.

Three years later, building on the work of Linial et al. (1993) Mansour (1995) proved that for any t-
term DNF formula, there exists a polynomial p defined over {0, 1}n with sparsity tO(log log t log(1/ε)) such
that Ex∈{0,1}n [(p(x) − f(x))2] ≤ ε (for 1/ε = poly(n)). By sparsity we mean the number of non-zero
Fourier coefficients of p. This result implied a nearly polynomial-time query algorithm for PAC learning
DNF formulas with respect to the uniform distribution.

Mansour conjectured (Mansour, 1994) that the above bound could be improved to tO(log 1/ε). Such an
improvement would imply a polynomial-time query algorithm for learning DNF formulas with respect to the
uniform distribution (to within any constant accuracy), and learning DNF formulas in this model was a major
open problem at that time.

In a celebrated work from 1994, Jeff Jackson proved that DNF formulas were learnable in polynomial
time (with queries, with respect to the uniform distribution) without proving the Mansour conjecture. His



“Harmonic Sieve” algorithm (Jackson, 1997) used boosting in combination with some weak approximation
properties of polynomials. As such, for several years, Mansour’s conjecture remained open and attracted
considerable interest, but its resolution did not imply any new results in learning theory.

In 2008, Gopalan et al. (2008b) proved that a positive resolution to the Mansour conjecture also implies
an efficient query algorithm for agnostically learning DNF formulas (to within any constant error parameter).
The agnostic model of learning is a challenging learning scenario that requires the learner to succeed in the
presence of adversarial noise. Roughly, Gopalan et al. (2008b) showed that if a class of Boolean functions C
can be ε-approximated by polynomials of sparsity s, then there is a query algorithm for agnostically learning
C in time poly(s, 1/ε) (since decision trees are approximated by sparse polynomials, they obtained the first
query algorithm for agnostically learning decision trees with respect to the uniform distribution on {0, 1}n).
Whether DNF formulas can be agnostically learned (with queries, with respect to the uniform distribution)
still remains a difficult open problem (Gopalan et al., 2008a).

1.1 Our Results
We prove that the Mansour conjecture is true for several well-studied subclasses of DNF formulas. As far as
we know, prior to this work, the Mansour conjecture was not known to be true for any interesting class of
DNF formulas.

Our first result shows that the Mansour conjecture is true for the class of randomly chosen DNF formulas:

Theorem 1 Let f : {0, 1}n → {0, 1} be a DNF formula with t = nO(1) terms where each term is chosen
independently from the set of all terms of length blog tc. Then with probability 1 − n−Ω(1) (over the choice
of the DNF formula), there exists a polynomial p with sparsity tO(log 1/ε) such that E[(p(x)− f(x))2] ≤ ε.

For t = nΘ(1), the conclusion of Theorem 1 holds with probability at least 1 − n−Ω(log t). Our second
result is that the Mansour conjecture is true for the class of read-k DNF formulas:

Theorem 2 Let f : {0, 1}n → {0, 1} be a DNF formula with t terms where each literal appears at most k

times. Then there exists a polynomial p with sparsity tO(16k log 1/ε) such that E[(p(x)− f(x))2] ≤ ε.

Even for the case k = 1, Mansour’s conjecture was not known to be true. Mansour (1995) proves
that any polynomial that approximates read-once DNF formulas to ε accuracy must have degree at least
d = Ω(log t log(1/ε)/ log log(1/ε)). He further shows that a “low-degree” strategy of selecting all of a
DNF formula’s Fourier coefficients of monomials up to degree d results in a polynomial p with sparsity
tO(log log t log 1/ε) for 1/ε = poly n. It is not clear, however, how to improve this to the desired tO(log 1/ε)

bound.
As mentioned earlier, by applying the result of Gopalan et al. (2008b), we obtain the first polynomial-

time query algorithms for agnostically learning the above classes of DNF formulas to within any constant
accuracy parameter. We consider this an important step towards agnostically learning all DNF formulas.

Corollary 3 Let C be the class of DNF formulas with t = nO(1) terms where each term is randomly chosen
from the set of all terms of length blog tc. Then there is a query-algorithm for agnostically learning C with
respect to the uniform distribution on {0, 1}n to accuracy ε in time poly(n) · tO(log 1/ε) with probability
1− n−Ω(1) (over the choice of the DNF formula).

We define the notion of agnostic learning with respect to randomly chosen concept classes in Section 2.
For t = nΘ(1), Corollary 3 holds for a 1 − n−Ω(log t) fraction of randomly chosen DNF formulas. We also
obtain a corresponding agnostic learning algorithm for read-k DNF formulas:

Corollary 4 Let C be the class of read-k DNF formulas with t terms. Then there is a query-algorithm for
agnostically learning C with respect to the uniform distribution on {0, 1}n to accuracy ε in time poly(n) ·
tO(16k log 1/ε).

Our sparse polynomial approximators can also be used in conjunction with recent work due to De et al.
(2009) to show that for randomly chosen polynomial-size DNF formulas or read-k DNF formulas f , a
t−O(log 1/ε)-biased distribution fools f (for k = O(1)):

Theorem 5 Let f be a randomly chosen polynomial-size DNF formula or a read-k DNF formula. Then (with
probability 1− n−Ω(1) for random DNF formulas) there exists a pseudorandom generator G such that∣∣∣∣ Pr

x∈{0,1}s
[f(G(x)) = 1]− Pr

z∈{0,1}n
[f(z) = 1]

∣∣∣∣ ≤ ε

with s = O(log n + log t · log(1/ε)).



Previously it was only known that these types of biased distributions fool read-once DNF formulas (De
et al., 2009).

1.2 Related Work
As mentioned earlier, Mansour, using the random restriction machinery of Håstad (1986) and Linial et al.
(1993) had shown that for any DNF formula f , there exists a polynomial of sparsity tO(log log t log 1/ε) that
approximates f .

The subclasses of DNF formulas that we show are agnostically learnable have been well-studied in the
PAC model of learning. Monotone read-k DNF formulas were shown to be PAC-learnable with respect to the
uniform distribution by Hancock and Mansour (1991), and random DNF formulas were recently shown to be
learnable on average with respect to the uniform distribution in the following sequence of work (Jackson &
Servedio, 2005; Jackson et al., 2008; Sellie, 2008; Sellie, 2009).

Recently (and independently) De et al. (2009) proved that for any read-once DNF formula f , there exists
an approximating polynomial p of sparsity tO(log 1/ε). More specifically, De et al. (2009) showed that for
any class of functions C fooled by δ-biased sets, there exist sparse, sandwiching polynomials for C where
the sparsity depends on δ. Since they show that t−O(log 1/ε)-biased sets fool read-once DNF formulas, the
existence of a sparse approximator for the read-once case is implicit in their work.

1.3 Our Approach
As stated above, our proof does not analyze the Fourier coefficients of DNF formulas, and our approach is
considerably simpler than the random-restriction method taken by Mansour (we consider the lack of Fourier
analysis a feature of the proof, given that all previous work on this problem has been Fourier-based). Instead,
we use polynomial interpolation.

A Basic Example. Consider a DNF formula f = T1 ∨ · · · ∨ Tt where each Ti is on a disjoint set of exactly
log t variables (assume t is a power of 2). The probability that each term is satisfied is 1/t, and the expected
number of satisfied terms is one. Further, since the terms are disjoint, with high probability over the choice of
the random input, only a few—say d—terms will be satisfied. As such, we construct a univariate polynomial
p with p(0) = 0 and p(i) = 1 for 1 ≤ i ≤ d. Then p(T1 + · · ·+ Tt) will be exactly equal to f as long as at
most d terms are satisfied. A careful calculation shows that the inputs where p is incorrect will not contribute
too much to E[(f − p)2], as there are few of them. Setting parameters appropriately yields a polynomial p
that is both sparse and an ε-approximator of f .

Random and read-once DNF formulas. More generally, we adopt the following strategy: given a DNF
formula f (randomly chosen or read-once) either (1) with sufficiently high probability a random input does
not satisfy too many terms of f or (2) f is highly biased. In the former case we can use polynomial in-
terpolation to construct a sparse approximator and in the latter case we can simply use the constant 0 or 1
function.

The probability calculations are a bit delicate, as we must ensure that the probability of many terms being
satisfied decays faster than the growth rate of our polynomial approximators. For the case of random DNF
formulas, we make use of some recent work due to Jackson et al. (2008) on learning random monotone DNF
formulas.

Read-k DNF formulas. Read-k DNF formulas do not fit into the above dichotomy so we do not use the
sum T1 + · · · + Tt inside the univariate polynomial. Instead, we use a sum of formulas (rather than terms)
based on a construction from (Razborov, 2008). We modify Razborov’s construction to exploit the fact that
terms in a read-k DNF formula do not share variables with many other terms. Our analysis shows that we
can then employ the previous strategy: either (1) with sufficiently high probability a random input does not
satisfy too many formulas in the sum or (2) f is highly biased.

2 Preliminaries
In this paper, we will primarily be concerned with Boolean functions f : {0, 1}n → {0, 1}. Let x1, . . . ,xn

be Boolean variables. A literal is either a variable xi of its negation x̄i, and a term is a conjunction of
literals. Any Boolean function can be expressed as a disjunction of terms, and such a formula is said to be a
disjunctive normal form (or DNF) formula. A read-k DNF formula is a DNF formula in which the maximum
number of occurrences of each variable is bounded by k. A Boolean function is monotone if changing the
value of an input bit from 0 to 1 never causes the value of f to change from 1 to 0. The following consequence
(Kleitman, 1966; Alon & Spencer, 2000) of the Four Functions Theorem will be useful in our study of
monotone functions.



Theorem 6 Let e, f , ¬g, and ¬h be monotone Boolean functions over {0, 1}n. Then for any product dis-
tribution D over {0, 1}n, PrD[e ∧ f ] ≥ PrD[e] PrD[f ], PrD[g ∧ h] ≥ PrD[g] PrD[h], and PrD[f ∧ g] ≤
PrD[f ] PrD[g].

2.1 Sparse Polynomials

Every function f : {0, 1}n → R can be expressed by its Fourier expansion: f(x) =
∑

S f̂(S)χS(x) where
χS(x) =

∏
i∈S(−1)xi for S ⊆ [n], and f̂(S) = E[f · χS ]. The Fourier expansion of f can be thought of as

the unique polynomial representation of f over {+1,−1}n under the map xi 7→ 1− 2xi.
Mansour conjectured that polynomial-size DNF formulas could be approximated by sparse polynomials

over {+1,−1}n. We say a polynomial p : {+1,−1}n→R has sparsity s if it has at most s non-zero coeffi-
cients. We state Mansour’s conjecture as originally posed in (Mansour, 1994), which uses the convention of
representing FALSE by +1 and TRUE by −1.

Conjecture 7 (Mansour, 1994) Let f : {+1,−1}n → {+1,−1} be any function computable by a t-term
DNF formula. Then there exists a polynomial p : {+1,−1}n → R with tO(log 1/ε) terms such that E[(f −
p)2] ≤ ε.

We will prove the conjecture to be true for various subclasses of polynomial-size DNF formulas. In our
setting, Boolean functions will output 0 for FALSE and 1 for TRUE. However, we can easily change the range
by setting f± := 1 − 2 · f . Changing the range to {+1,−1} changes the accuracy of the approximation by
at most a factor of 4: E[((1− 2f)− (1− 2p))2] = 4E[(f − p)2], and it increases the sparsity by at most 1.

Given a Boolean function f , we construct a sparse approximating polynomial over {+1,−1}n by giving
an approximating polynomial p : {0, 1}n→R with real coefficients that has small spectral norm. The rest
of the section gives us some tools to construct such polynomials and explains why doing so yields sparse
approximators.

Definition 8 The Fourier `1-norm (also called the spectral norm) of a function p : {0, 1}n→R is defined to
be ‖p‖1 :=

∑
S |p̂(S)|. We will also use the following minor variant, ‖p‖ 6=∅1 :=

∑
S 6=∅|p̂(S)|.

The following two facts about the spectral norm of functions will allow us to construct polynomials over
{0, 1}n naturally from DNF formulas.

Fact 9 Let p : {0, 1}m→R be a polynomial with coefficients pS ∈ R for S ⊆ [m], and q1, . . . , qm :
{0, 1}n→{0, 1} be arbitrary Boolean functions. Then p(q1, . . . , qm) =

∑
S pS

∏
i∈S qi is a polynomial over

{0, 1}n with spectral norm at most ∑
S⊆[m]

|pS |
∏
i∈S

||qi||1.

Proof: The fact follows by observing that for any p, q : {0, 1}n→R, we have ||p + q||1 ≤ ||p||1 + ||q||1 and
||pq||1 ≤ ||p||1||q||1.

Fact 10 Let T : {0, 1}n→{0, 1} be an AND of a subset of its literals. Then ||T ||1 = 1.

Finally, using the fact below, we show why approximating polynomials with small spectral norm give sparse
approximating polynomials.

Fact 11 (Kushilevitz & Mansour, 1993) Given any function f : {0, 1}n→R and ε > 0, let S = {S ⊆ [n] :
|f̂(S)| ≥ ε/‖f‖1}, and g(x) =

∑
S∈S f̂(S)χs(x). Then E[(f − g)2] ≤ ε, and |S| ≤ ‖f‖2

1/ε.

Now, given functions f, p : {0, 1}n→R such that E[(f − p)2] ≤ ε, we can construct a 4ε-approximator for
f with sparsity ||p||21/ε by defining p′(x) =

∑
S∈S p̂(S)χS(x) as in Fact 11. Clearly p′ has sparsity ||p||21/ε,

and
E[(f − p′)2] = E[(f − p + p− p′)2] ≤ E[2((f − p)2 + (p− p′)2)] ≤ 4ε,

where the first inequality follows from the inequality (a + b)2 ≤ 2(a2 + b2) for any reals a and b.



2.2 Agnostic learning
We first describe the traditional framework for agnostically learning concept classes with respect to the uni-
form distribution and then give a slightly modified definition for an “average-case” version of agnostic learn-
ing where the unknown concept (in this case a DNF formula) is randomly chosen.

Definition 12 (Standard agnostic model) Let f : {+1,−1}n → {+1,−1} be an arbitrary function, and
let D be the uniform distribution on {+1,−1}n. Define

opt = min
c∈C

Pr
x∼D

[c(x) 6= f(x)].

That is, opt is the error of the best fitting concept in C with respect to D. We say that an algorithm A
agnostically learns C with respect to D if the following holds for any f : if A is given black-box access to f
then with high probability A outputs a hypothesis h such that Prx∼D[h(x) 6= f(x)] ≤ opt + ε.

The intuition behind the above definition is that a learner—given access to a concept c ∈ C where an
η fraction of c’s inputs have been adversarially corrupted—should still be able to output a hypothesis with
accuracy η + ε (achieving error better than η may not be possible, as the adversary could embed a completely
random function on an η fraction of c’s inputs). Here η plays the role of opt.

This motivates the following definition for agnostically learning a randomly chosen concept from some
class C:

Definition 13 (Agnostically learning random concepts) Let C be a concept class and choose c randomly
from C (the distribution over C will be clear from the context). We say that an algorithm A agnostically
learns random concepts from C if with probability at least 1 − δ over the choice of c the following holds: if
the learner is given black-box access to some fixed function c′ and Prx∈{+1,−1}n [c(x) 6= c′(x)] ≤ η, then A
outputs a hypothesis h such that Prx∈{+1,−1}n [h(x) 6= c′(x)] ≤ η + ε.

We are unaware of any prior work defining an agnostic framework for learning randomly chosen concepts.
The main result we use to connect the approximation of DNF formulas by sparse polynomials with ag-

nostic learning is due to Gopalan et al. (2008b):

Theorem 14 (Gopalan et al., 2008b) Let C be a concept class such that for every c ∈ C there exists a
polynomial p such that ‖p‖1 ≤ s and Ex∈{+1,−1}n [|p(x)−c(x)|2] ≤ ε2/2. Then there exists an algorithm B

such that the following holds: given black-box access to any Boolean function f : {+1,−1}n→{+1,−1},
B runs in time poly(n, s, 1/ε) and outputs a hypothesis h : {+1,−1}n→{+1,−1} with

Pr
x∈{+1,−1}n

[h(x) 6= f(x)] ≤ opt + ε.

3 Approximating DNFs using univariate polynomial interpolation
Let f = T1∨T2∨· · ·∨Tt be any DNF formula. We say Ti(x) = 1 if x satisfies the term Ti, and 0 otherwise.
Let yf : {0, 1}n → {0, . . . ,t} be the function that outputs the number of terms of f satisfied by x, i.e.,
yf (x) = T1(x) + T2(x) + · · ·+ Tt(x).

Our constructions will use the following univariate polynomial Pd to interpolate the values of f on inputs
{x : yf (x) ≤ d}.

Fact 15 Let

Pd(y) := (−1)d+1 (y − 1)(y − 2) · · · (y − d)
d!

+ 1. (1)

Then, (1) the polynomial Pd is a degree-d polynomial in y; (2) Pd(0) = 0, Pd(y) = 1 for y ∈ [d], and for
y ∈ [t] \ [d], Pd(y) = −

(
y−1

d

)
+ 1 ≤ 0 if d is even and Pd(y) =

(
y−1

d

)
+ 1 > 1 if d is odd; and (3) the sum

of the magnitudes of Pd’s coefficients is d.

Proof: Properties (1) and (2) can be easily verified by inspection. Expanding the falling factorial, we get that
(y − 1)(y − 2) · · · (y − d) =

∑d
j=0(−1)d−j

[
d+1
j+1

]
yj , where

[
a
b

]
denotes a Stirling number of the first kind.

The Stirling numbers of the first kind count the number of permutations of a elements with b disjoint cycles.
Therefore,

∑d
j=0

[
d+1
j+1

]
= (d +1)! (Graham et al., 1994). The constant coefficient of Pd is 0 by Property (2),

thus the sum of the absolute values of the other coefficients is ((d + 1)!− d!)/d! = d.

For any t-term DNF formula f , we can construct a polynomial pf,d : {0, 1}n→R defined as pf,d :=
Pd ◦yf . A simple calculation, given below, shows that the `1-norm of pf,d is polynomial in t and exponential
in d.



Lemma 16 Let f be a t-term DNF formula, then ‖pf,d‖1 ≤ tO(d).

Proof: By Fact 15, Pd is a degree-d univariate polynomial with d non-zero coefficients of magnitude at most
d. We can view the polynomial pf,d as the polynomial P ′

d(T1, . . . , Tt) := Pd(T1 + · · · + Tt) over variables
Ti ∈ {0, 1}. Expanding out P ′

d gives us at most dtd monomials with coefficients of magnitude at most d.
Now each monomial of P ′

d is a product of Ti’s, so applying Facts 10 and 9 we have that ‖pf,d‖1 ≤ tO(d).

The next two sections will show that the polynomial pf,d (for d = Θ(log 1/ε)) is in fact a good approxi-
mation for random DNF formulas and (with a slight modification) for read-k DNF formulas. As a warm-up,
we will show the simple case of read-once DNF formulas.

3.1 A Simple Case: Read-Once DNF Formulas
For read-once DNF formulas, the probability that a term is satisfied is independent of whether or not any of
the other terms are satisfied, and thus f is unlikely to have many terms satisfied simultaneously.

Lemma 17 Let f = T1∨, · · · ,∨Tt be a read-once DNF formula of size t such that Pr[f ] < 1− ε. Then the
probability over the uniform distribution on {0, 1}n that some set of j > e ln 1/ε terms is satisfied is at most(

e ln 1/ε
j

)j

.

Proof: For any assignment x to the variables of f , let yf (x) be the number terms satisfied in f . By linearity
of expectation, we have that Ex[yf (x)] =

∑t
i=1 Pr[Ti = 1]. Note that Pr[¬f ] =

∏t
i=1(1−Pr[Ti]), which is

maximized when each Pr[Ti] = E[yf ]/t, hence Pr[¬f ] ≤ (1− E[yf ]/t)t ≤ e−E[yf ]. Thus we may assume
that E[yf ] ≤ ln 1/ε, otherwise Pr[f ] ≥ 1− ε.

Assuming E[yf ] ≤ ln 1/ε, we now bound the probability that some set of j > e ln 1/ε terms of f is
satisfied. Since all the terms are disjoint, this probability is

∑
S⊆[t],|S|=j

∏
i∈S Pr[Ti], and the arithmetic-

geometric mean inequality gives that this is maximized when every Pr[Ti] = E[yf ]/t. Then the probability
of satisfying some set of j terms is at most:(

t

j

)(
ln 1/ε

t

)j

≤
(

et

j

)j ( ln 1/ε

t

)j

=
(

e ln 1/ε

j

)j

,

which concludes the proof of the lemma.

The following lemma shows that we can set d to be fairly small, Θ(log 1/ε), and the polynomial pf,d

will be a good approximation for any DNF formula f , as long as f is unlikely to have many terms satisfied
simultaneously.

Lemma 18 Let f be any t-term DNF formula, and let d = d4e3 ln 1/εe. If

Pr[yf (x) = j] ≤
(

e ln 1/ε

j

)j

for every d ≤ j ≤ t, then the polynomial pf,d satisfies E[(f − pf,d)2] ≤ ε.

Proof: We condition on the values of yf (x), controlling the magnitude of pf,d by the unlikelihood of yf

being large. By Fact 15, pf,d(x) will output 0 if x does not satisfy f , pf,d(x) will output 1 if yf (x) ∈ [d],
and |pf,d(x)| <

(
yf

d

)
for yf (x) ∈ [t] \ [d]. Hence:

‖f − pf,d‖2 <

t∑
j=d+1

(
j

d

)2(
e ln 1/ε

j

)j

<

t∑
j=d+1

22j

(
e ln 1/ε

4e3 ln 1/ε

)j

< ε

t∑
j=d+1

1
ej

< ε.

Combining Lemmas 16, 17, and 18 gives us Mansour’s conjecture for read-once DNF formulas.

Theorem 19 Let f be any read-once DNF formula with t terms. Then there is a polynomial pf,d with
‖pf,d‖1 ≤ tO(log 1/ε) and E[(f − pf,d)2] ≤ ε for all ε > 0.



4 Mansour’s Conjecture for Random DNF Formulas
In this section, we establish various properties of random DNF formulas and use these properties to show that
for almost all f , Mansour’s conjecture holds. Roughly speaking, we will show that a random DNF formula
behaves like a read-once DNF formula, in that any “large” set of terms is unlikely to be satisfied by a random
assignment. This notion is formalized in Lemma 22. For such DNF formulas, we may use the construction
from Section 3 to obtain a good approximating polynomial for f with small spectral norm (Theorem 24).

Throughout the rest of this section, we assume that t(n) = nO(1). For brevity we write t for t(n). Let
Dt

n be the probability distribution over t-term DNF formulas induced by the following process: each term
is independently and uniformly chosen at random from all t

(
n

log t

)
possible terms of size exactly log t over

{x1, . . . ,xn}. For convenience, we assume that log t is an integer throughout our discussion, although the
general case is easily handled by taking terms of length blog tc. If the terms are not of size Θ(log n), then the
DNF will be biased, and thus be easy to learn. We refer the reader to Jackson and Servedio (2005) for a full
discussion of the model.

If t grows very slowly relative to n, say t = no(1), then with high probability (1 − nΩ(1)) a random f
drawn from Dt

n will be a read-once DNF formula, in which case the results of Section 3.1 hold. Therefore,
throughout the rest of this section we will assume that t is in fact nΘ(1).

To prove Lemma 22, we require two lemmas, which are inspired by the results of (Jackson & Servedio,
2005) and (Jackson et al., 2008). Lemma 20 shows that with high probability the terms of a random DNF
formula are close to being disjoint, and thus cover close to j log t variables.

Lemma 20 With probability at least 1− tjej log t(j log t)log t/nlog t over the random draw of f from Dt
n, at

least j log t− (log t)/4 variables occur in every set of j distinct terms of f . The failure probability is at most
1/nΩ(log t) for any j < c log n, for some constant c.

Proof: Let k := log t. Fix a set of j terms, and let v ≤ jk be the number of distinct variables (negated
or not) that occur in these terms. We will bound the probability that v > w := jk − k/4. Consider any
particular fixed set of w variables. The probability that none of the j terms include any variable outside of
the w variables is precisely

((
w
k

)
/
(
n
k

))j
. Thus, the probability that v ≤ w is by the union bound:(

n

w

)((w
k

)(
n
k

))j

<
(en

w

)w (w

n

)jk

=
ejk−k/4(jk − k/4)k/4

nk/4
<

ejk(jk)k/4

nk/4
.

Taking a union bound over all (at most tj) sets, we have that with the correct probability every set of j terms
contains at least w distinct variables.

We will use the method of bounded differences (a.k.a., McDiarmid’s inequality) to prove Lemma 22.

Proposition 21 (McDiarmid’s inequality) Let X1, . . . ,Xm be independent random variables taking values
in a set X , and let f : Xm → R be such that for all i ∈ [m], |f(a) − f(a′)| ≤ di, whenever a, a′ ∈ Xm

differ in just the ith coordinate. Then for all τ > 0,

Pr [f > E f + τ ] ≤ exp
(
− 2τ2∑

i d2
i

)
and Pr [f < E f − τ ] ≤ exp

(
− 2τ2∑

i d2
i

)
.

The following lemma shows that with high probability over the choice of random DNF formula, the
probability that exactly j terms are satisfied is close to that for the “tribes” function:

(
t
j

)
t−j(1− 1/t)t−j .

Lemma 22 There exists a constant c such that for any j < c log n, with probability at least 1 − 1/nΩ(log t)

over the random draw of f from Dt
n, the probability over the uniform distribution on {0, 1}n that an input

satisfies exactly j distinct terms of f is at most 2
(

t
j

)
t−j(1− 1/t)t−j .

Proof: Let f = T1 ∨ · · · ∨ Tt, and let β := t−j(1 − 1/t)t−j . Fix any J ⊂ [t] of size j, and let UJ be the
probability over x ∈ {0, 1}n that the terms Ti for i ∈ J are satisfied and no other terms are satisfied. We
will show that UJ < 2β with high probability; a union bound over all possible sets J of size j in [t] gives
that UJ ≤ 2β for every J with high probability. Finally, a union bound over all

(
t
j

)
possible sets of j terms

(where the probability is taken over x) proves the lemma.
Without loss of generality, we may assume that J = [j]. For any fixed x, we have:

Pr
f∈Dt

n

[x satisfies exactly the terms in J ] = β,



and thus by linearity of expectation, we have Ef∈Dt
n

[UJ ] = β. Now we show that with high probability that
the deviation of UJ from its expected value is low.

Applying Lemma 20, we may assume that the terms T1, · · · , Tj contain at least j log t− (log t)/4 many
variables, and that J ∪ Ti for all i = j + 1, · · · , t includes at least (j + 1) log t − (log t)/4 many unique
variables, while increasing the failure probability by only 1/nΩ(log t). Note that conditioning on this event
can change the value of UJ by at most 1/nΩ(log t) < 1

2β, so under this conditioning we have E[Pj ] ≥ 1
2β.

Conditioning on this event, fix the terms T1, · · · , Tj . Then the terms Tj+1, · · · , Tt are chosen uniformly and
independently from the set of all terms T of length log t such that the union of the variables in J and T
includes at least (j + 1) log t− (log t)/4 unique variables. Call this set X .

We now use McDiarmid’s inequality where the random variables are the terms Tj+1, . . . , Tt randomly
selected from X , letting g(Tj+1, · · · , Tt) = UJ and g(Tj+1, · · · , Ti−1, T

′
i , Ti+1, · · · , Tt) = U ′

J for all
i = j + 1, . . . ,t. We claim that:

|UJ − U ′
J | ≤ di :=

t1/4

tj+1
.

This is because U ′
J can only be larger than UJ by assignments which satisfy T1, · · · , TJ and Ti. Similarly,

U ′
J can only be smaller than UJ by assignments which satisfy T1, · · · , TJ and T ′

i . Since Ti and T ′
i come

from X , we know that at least (j + 1)t− (log t)/4 variables must be satisfied.
Thus we may apply McDiarmid’s inequality with τ = 3

2β, which gives that Prf [UJ > 2β] is at most

exp
( −2 9

4β2

t3/2/t2j+2

)
≤ exp

(
−9

√
t(1− 1/t)2(t−j)

2

)
.

Combining the failure probabilities over all the
(

t
j

)
possible sets, we get that with probability at least(

t

j

)(
1

nΩ(log t)
+ e−9

√
t(1−1/t)2(t−j)/2

)
=

1
nΩ(log t)

,

over the random draw of f from Dt
n, UJ for all J ⊆ [t] of size j is at most 2β. Thus, the probability that a

random input satisfies exactly some j distinct terms of f is at most 2
(

t
j

)
β.

Using these properties of random DNF formulas we can now show a lemma analogous to Lemma 18 for
random DNF formulas.

Lemma 23 Let f be any DNF formula with t = nO(1) terms, and let ε > 0 which satisfies 1/ε = o(log log n).
Then set d = d4e3 ln 1/εe and ` = c log n, where c is the constant in Lemma 22. If

Pr[yf (x) = j] ≤
(

e ln 1/ε

j

)j

for every d ≤ j ≤ `, then the polynomial pf,d satisfies E[(f − pf,d)2] ≤ ε.

Proof: We condition on the values of yf (x), controlling the magnitude of pf,d by the unlikelihood of yf

being large. By Fact 15, pf,d(x) will output 0 if x does not satisfy f , pf,d(x) will output 1 if yf (x) ∈ [d],
and |pf,d(x)| <

(
yf

d

)
for yf (x) ∈ [t] \ [d]. Hence:

‖f − pf,d‖2 <

`−1∑
j=d+1

(
j

d

)2(
e ln 1/ε

j

)j

+
(

t

d

)2

· Pr[yf ≥ `]

<

`−1∑
j=d+1

22j

(
e ln 1/ε

4e3 ln 1/ε

)j

+ n−Ω(log log n)

< ε

`−1∑
j=d+1

1
ej

+ n−Ω(log log n) < ε.

We can now show that Mansour’s conjecture (Mansour, 1994) is true with high probability over the choice
of f from Dt

n.

Theorem 24 Let f : {0, 1}n → {0, 1} be a t = nΘ(1)-term DNF formula where each term is chosen
independently from the set of all terms of length log t. Then with probability at least 1 − n−Ω(log t) over the
choice of f , there exists a polynomial p with ‖p‖1 ≤ tO(log 1/ε) such that E[(p(x)− f(x))2] ≤ ε.



Proof: Let d := d4e3 ln(1/ε)e and pf,d be as defined in Section 3. Lemma 16 tells us that ‖pf,d‖1 ≤
tO(log 1/ε). We show that with probability at least 1 − n−Ω(log t) over the random draw of f from Dt

n, pf,d

will be a good approximator for f . This follows by Lemma 22; with probability at least 1− (c log(n)− d−
1)/nΩ(log t) = 1 − n−Ω(log t), we have Pr[y = j] for all d < j ≤ c log(n). Thus for such f Lemma 18 tells
us that E[(f − pf,d)2] ≤ ε.

5 Mansour’s Conjecture for Read-k DNF Formulas
In this section, we give an ε-approximating polynomial for any read-k DNF formula and show that its spectral
norm is at most tO(24k log 1/ε). This implies that Mansour’s conjecture holds for all read-k DNF formulas
where k is any constant.

Read-k DNF formulas may not satisfy the conditions of Lemma 18, so we must change our approach.
Instead of using

∑t
i=1 Ti inside our univariate polynomial, we use a different sum, which is based on a

construction from (Razborov, 2008) for representing any DNF formula. We modify this representation to
exploit the fact that for read-k DNF formulas, the variables in a term can not share variables with too many
other terms. Unlike for read-once DNF formulas, it is not clear that the number of terms satisfied in a read-k
DNF formula will be extremely concentrated on a small range. We show how to modify our construction so
that a concentration result does hold.

Let f = T1 ∨ · · · ∨ Tt be any t-term read-k DNF formula, and let |Ti| denote the number of variables in
the term Ti. We assume that the terms are ordered from longest to shortest, i.e., |Tj | ≥ |Ti| for all j ≤ i. For
any term Ti of f , let φi be the DNF formula consisting of those terms (at least as large as Ti) in T1, · · · , Ti−1

that overlap with Ti, i.e.,
φi :=

∨
j∈Ci

Tj , for Ci = {j < i | Tj ∩ Ti 6= ∅}.

We define Ai := Ti ∧ ¬φi and zf :=
∑t

i=1 Ai. The function zf : {0, 1}n → {0, . . . ,t} outputs the number
of disjoint terms of f satisfied by x (greedily starting from T1). Note that if f is a read-once DNF formula,
then zf = yf .

Observe that each Ai can be represented by the polynomial Ti ·
∏

j∈Ci
(1− Tj) (and so zf can be repre-

sented by a polynomial), and that ||(1 − Tj)||1 ≤ 2 for all j. As f is a read-k DNF formula, each φi has at
most k|Ti| terms, and Ai has small spectral norm:

Fact 25 Let f = T1 ∨ · · · ∨ Tt be a t-term read-k DNF formula. Then each Ai has a polynomial represen-
tation, and ||Ai||1 ≤ 2k|Ti|.

As we did in Section 3, we can construct a polynomial qf,d : {0, 1}n→R defined as qf,d := Pd ◦ zf for
any t-term read-k DNF formula f . The following lemma shows that qf,d has small spectral norm.

Lemma 26 Let f be a t-term read-k DNF formula with terms of length at most w. Then ‖qf,d‖1 ≤
2O(d(log t+kw)).

Proof: By Fact 15, Pd is a degree-d univariate polynomial with d terms and coefficients of magnitude at most
d. We can view the polynomial qf,d as the polynomial P ′

d(A1, . . . , At) := Pd(A1 + · · ·+ At) over variables
Ai ∈ {0, 1}. Expanding out (but not recombining) P ′

d gives us at most dtd monomials of degree d (over
variables Ai) with coefficients of magnitude at most d.

We can now apply Facts 25 and 9 to bound the spectral norm of qf,d. Since P ′
d has at most dtd mono-

mials each of degree d (over Ai), fnd each Ai satisfies ||Ai||1 ≤ 2kw, we have that ||qf,d||1 ≤ 2dkwdtd =
2O(d(log t+kw)).

We will show that Mansour’s conjecture holds for read-k DNF formulas by showing that zf =
∑t

i=1 Ai

behaves much like yf =
∑t

i=1 Ti would if f were a read-once DNF formula, and thus we can use our
polynomial Pd (Equation 1) to approximate f .

One crucial property of our construction is that only disjoint sets of terms can contribute to zf .

Claim 27 Let T1 ∨ · · · ∨ Tt be a t-term DNF formula. Then for any S ⊆ [t], Pr[∧i∈SAi] ≤
∏

i∈S Pr[Ti].

Proof: If there is a pair j, k ∈ S such that Tj ∩ Tk 6= ∅ for some j < k, then φk contains Tj and both
Tj ∧ ¬φj and Tk ∧ ¬φk cannot be satisfied simultaneously, so Pr[∧i∈SAi] = 0. If no such pair exists, then
all the terms indexed by S are disjoint. Thus,

Pr[∧i∈SAi] ≤ Pr[∧i∈STi] =
∏
i∈S

Pr[Ti],



as was to be shown.

The following lemma was communicated to us by Omid Etesami and James Cook (Etesami & Cook,
2010).

Lemma 28 Let f = T1 ∨ . . . ∨ Tt be a t-term read-k DNF formula, and let f ′ = T ′
1 ∨ . . . ∨ T ′

t be the
monotone formula obtained from f by replacing all the negative literals by their positive counterparts. Then
Pr[f ′] ≤ Pr[f ].

Proof: For each 0 ≤ i ≤ n, define f (i) as the DNF formula obtained from f when replacing each occurrence
of ¬xj by xj for all 1 ≤ j ≤ i. In particular, f (0) = f and f (n) = f ′. Let f (i−1) = (gxi

∧ xi) ∨ (g¬xi
∧

¬xi) ∨ g∅ where gxi ∧ xi is the OR of all terms from f (i−1) that have the literal xi, g¬xi ∧ ¬xi is the OR of
all terms that have the literal ¬xi, and g∅ is the OR of all terms that neither contain xi nor contain ¬xi. Note
that f (i) = ((gxi ∨ g¬xi) ∧ xi) ∨ g∅. Thus

Pr
[
f (i−1)

]
=

1
2

Pr[gxi ∧ ¬g∅] +
1
2

Pr[g¬xi ∧ ¬g∅] + Pr[g∅],

and
Pr
[
f (i)
]

=
1
2

Pr[(gxi
∨ g¬xi

) ∧ ¬g∅] + Pr[g∅].

A union bound on the events (gxi ∧ ¬g∅) and (g¬xi ∧ ¬g∅) tells us that Pr[f (i−1)] ≥ Pr[f (i)], and thus
Pr[f (0)] ≥ Pr[f (n)].

As in the read-once case, we will prove that for any read-k DNF formula f , if
∑t

i=1 Pr[Ti] is large then
f is biased towards one (Lemma 30). To do so we will prove this for monotone read-k DNF formulas and
then use Lemma 28 to obtain the general case. Before we prove Lemma 30 we need the following claim,
which tells us that for a read-k monotone DNF formula, the probability of satisfying Ai compared to that of
satisfying Ti is only smaller by a constant (for constant k).

Claim 29 Let T1 ∨ · · · ∨ Tt be a t-term monotone read-k DNF formula. Then 2−4k Pr[Ti] ≤ Pr[Ai].

Proof: Let I be the set of indices of the terms in φi. For each Tj ∈ φi, let T ′
j be Tj with all the variables of

Ti set to 1, and let φ′i = ∨{j:Tj∈φi}T
′
j . (For example, if Ti = x1x2x3 and Tj = x2x4x5 is a term of φi, then

φ′i contains the term T ′
j = x4x5.) Observe that Pr[Ai] = Pr[Ti ∧ ¬φi] = Pr[Ti ∧ ¬φ′i] = Pr[Ti] Pr[¬φ′i].

Thus it suffices to show that Pr[¬φ′i] ≥ 2−4k.
Let aj be the number of variables in Tj ∩ Ti. By the definition of φi, 1 ≤ aj ≤ |Ti| − 1, and note that

Pr[T ′
j ] = 2aj−|Tj |. Applying the Four Functions Theorem (Theorem 6), we obtain:

Pr[¬φ′i] ≥
∏
j∈I

Pr[¬T ′
j ] =

∏
j∈I

(1− 2aj−|Tj |) ≥
∏
j∈I

(1− 2aj−|Ti|).

We partition I into two sets: J = {j : aj ≤ |Ti|/2} and J ′ = {j : aj > |Ti|/2}. (Assume that |Ti| ≥ 4
or else we are done, because there can be at most 4k terms.) As φi is a read-k DNF formula, we have that∑

j∈I aj ≤ k|Ti|, and thus |J ′| ≤ 2k, and |J | ≤ k|Ti|.
We will lower bound the products over each set of indices separately. For those terms in J , we have that

Pr[T ′
j ] ≤ 2−|Ti|/2, hence∏

j∈J

(1− Pr[T ′
j ]) ≥

∏
j∈J

(1− 2−|Ti|/2) ≥ (1− 2−|Ti|/2)k|Ti| ≥ 2−2k.

For those terms Tj , j ∈ J ′ (which share many variables with Ti), we use the facts that each Pr[T ′
j ] ≤ 1/2

and that there are at most 2k such terms, so that∏
j∈J′

(1− Pr[T ′
j ]) ≥ 2−2k.

Taking the product over the set J ∪ J ′ completes the proof of the claim.

Finally, we will prove that for any read-k DNF formula f , if
∑t

i=1 Pr[Ti] is large then f is biased towards
one. Using Lemma 30 with Claim 27, we can prove a lemma analogous to Lemma 17 by a case analysis of∑t

i=1 Pr[Ti]; either it is large and f must be biased toward one, or it is small so zf is usually small.



Lemma 30 Let f be a t-term read-k DNF formula. Then,
t∑

i=1

Pr[Ti] ≤ 24k ln
(

1
Pr[¬f ]

)
.

Proof: First, let us consider the case when f is monotone. Let ρi be those terms among T1, . . . , Ti−1 that are
not present in φi. We can upper-bound Pr[¬f ] by:

Pr[¬f ] =
t∏

i=1

(1− Pr[Ti | ¬φi ∧ ¬ρi])

≤
t∏

i=1

(1− Pr[Ti ∧ ¬φi | ¬ρi]) =
t∏

i=1

(1− Pr[Ti | ¬ρi] Pr[¬φi | Ti ∧ ¬ρi])

≤
t∏

i=1

(1− Pr[Ti] Pr[¬φi | Ti]) =
t∏

i=1

(1− Pr[Ai]) .

The first inequality comes from Pr[A | B ∧ C] ≥ Pr[A ∧ B | C] for any A, B, and C. The last inequality
holds because Pr[Ti | ¬ρi] = Pr[Ti] (by the mutual independence of Ti and ρi) and Pr[¬φi | Ti] ≤ Pr[¬φi |
Ti ∧ ¬ρi]. The last fact may be obtained by applying the Four Functions Theorem to ¬φi and ¬ρi under the
product distribution induced by setting all the variables of Ti to be true.

We apply Claim 29 to obtain Pr[¬f ] ≤
∏t

i=1(1 − Pr[Ti]2−4k), and the arithmetic-geometric mean
inequality shows that our upper-bound on Pr[¬f ] is maximized when all the Pr[Ti] are equal, hence:

Pr[¬f ] ≤

(
1− 2−4k

∑t
i=1 Pr[Ti]

t

)t

≤ exp

(
−2−4k

t∑
i=1

Pr[Ti]

)
.

Solving for
∑t

i=1 Pr[Ti] yields the lemma.
Now let f be a non-monotone DNF formula, and let f ′ be the monotonized version of f . Then by

Lemma 28 we have:
t∑

i=1

Pr[Ti] =
t∑

i=1

Pr[T ′
i ] ≤ 24k ln

(
1

Pr[¬f ′]

)
≤ 24k ln

(
1

Pr[¬f ]

)
,

as was to be shown.

Lemma 31 Let f = T1 ∨ · · · ∨ Tt be a read-k DNF formula of size t such that Pr[f ] < 1 − ε. Then
the probability over the uniform distribution on {0, 1}n that zf ≥ j (for any j > 24ke ln(1/ε)) is at most(

24ke ln(1/ε)
j

)j

.

Proof: By Lemma 30, TA :=
∑t

i=1 Pr[Ti] < 24k ln(1/ε). The probability that some set of j Ai’s is satisfied
is at most

∑
S⊆[t],|S|=j Pr[∧i∈SAi]. Applying Claim 27, we have:∑

S⊆[t],|S|=j

Pr[∧i∈SAi] ≤
∑

S⊆[t],|S|=j

∏
i∈S

Pr[Ti].

The arithmetic-geometric mean inequality shows that this quantity is maximized when all Pr[Ti] are equal,
hence: ∑

S⊆[t],|S|=j

∏
i∈S

Pr[Ti] ≤
(

t

j

)(
TA

t

)j

≤
(

eTA

j

)j

≤
(

24ke ln 1/ε

j

)j

We can now show that Mansour’s conjecture holds for read-k DNF formulas with any constant k.

Theorem 32 Let f : {0, 1}n → {0, 1} be any read-k DNF formula with t terms. Then there is a polynomial
qf,d with ‖qf,d‖1 = tO(24k log 1/ε) and E[(f − qf,d)2] ≤ ε for all ε > 0.

Proof: If Pr[f = 1] > 1 − ε, the constant 1 is a suitable polynomial. Let g be the DNF formula f after
dropping terms of length greater than w := log(2t/ε). (This only changes the probability by ε/2.) Let
d := d4e324k ln(2/ε)e and qg,d be as defined at the beginning of Section 5. Lemma 26 tells us that ‖qg,d‖1 ≤
tO(24k log 1/ε), and Lemma 31 combined with Lemma 18 tells us that E[(g − qg,d)2] ≤ ε/2.



6 Pseudorandomness

De et al. (2009) recently improved long-standing pseudorandom generators against DNF formulas.

Definition 33 A probability distribution X over {0, 1}n
ε-fools a real function f : {0, 1}n → R if

|E[f(X)]−E[f(Un)]| ≤ ε.

If C is a class of functions, then we say that X ε-fools C if X ε-fools every function f ∈ C.
We say a probability distribution X over {0, 1}n is ε-biased if it ε-fools the character function χS for

every S ⊆ [n].

De et al. (2009) observed that the result of Bazzi (2007) implied a pseudorandom generator that ε-fools
t-term DNF formulas over n variables with seed length O(log n · log2(t/β)), which already improves the
long-standing upper bound of O(log4(tn/ε)) of Luby et al. (1993). They go on to show a pseudorandom
generator with seed length O(log n + log2(t/ε) log log(t/ε)).

They prove that a sufficient condition for a function f to be ε-fooled by an ε-biased distribution is that the
function be “sandwiched” between two bounded real-valued functions whose Fourier transform has small `1
norm:

Lemma 34 (Sandwich Bound (De et al., 2009)) Suppose f, f`, fu : {0, 1}n → R are three functions such
that for every x ∈ {0, 1}n, f`(x) ≤ f(x) ≤ fu(x), E[fu(Un)]−E[f(Un)] ≤ ε, and E[f(Un)]−E[f`(Un)] ≤
ε. Let L = max(‖f`‖6=∅1 , ‖fu‖6=∅1 ). Then any β-biased probability distribution (ε + βL)-fools f .

Naor and Naor (1993) prove that an ε-biased distribution over n bits can be sampled using a seed of
O(log(n/ε)) bits. Using our construction from Section 4, we show that random DNF formulas are ε-fooled
by a pseudorandom generator with seed length O(log n + log(t) log(1/ε)):

Theorem 35 Let f = T1∨· · ·∨Tt be a random DNF formula chosen from Dt
n for t = nΘ(1). For 1 ≤ d ≤ t,

with probability 1 − 1/nΩ(log t) over the choice of f , β-biased distributions O(2−Ω(d) + βtd)-fool f . In
particular, we can ε-fool most f ∈ Dt

n by a t−O(log(1/ε)-biased distribution.

Proof: Let d+ be the first odd integer greater than d, and let d− be the first even integer greater than d. Let
fu = pf,d+ and f` = pf,d− (where pf,d is defined as in Section 3). By Lemma 16, the `1-norms of fu and f`

are tO(d). By Fact 15, we know that Pd+(y) =
(
y−1

d

)
+1 > 1 and Pd−(y) = −

(
y−1

d

)
+1 ≤ 0 for y ∈ [t]\ [d],

hence:

E[fu(Un)]−E[f(Un)] =
t∑

j=d+1

((
j − 1

d

)
+ 1− 1

)
Pr[yf = j],

which with probability 1 − 1/nΩ(log t) over the choice of f is at most 2−Ω(d) by the analysis in Lemma 18.
The same analysis applies for f`, thus applying Lemma 34 gives us the theorem.

De et al. (2009) match our bound for random DNF formulas for the special case of read-once DNF formu-
las. Using our construction from Section 5 and a similar proof as the one above, we can show that monotone
read-k formulas are ε-fooled by a pseudorandom generator with seed length O(log n + log(t) log(1/ε)).

Theorem 36 Let f = T1 ∨ · · · ∨ Tt be a read-k DNF formula for constant k. For 1 ≤ d ≤ t, β-biased
distributions O(2−Ω(d) + βtd)-fool f . In particular, we can ε-fool read-k DNF formulas by a t−O(log(1/ε))-
biased distribution.
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