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Example: Real time web page optimization
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Example: Real time web page optimization

Which ad will generate the most $/clicks ?
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Characteristics of the problem

� A choice must be made for each customer.
� Cannot observe the outcome of the alternative choice.
� Try to maximize the rewards.

Exploration vs. Exploitation dilemma

Exploration: which one is the best?
Exploitation: display the best as much as possible.
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Two armed bandit problem: setup

� Two arms (e.g.: actions, ads):i 2 f 1; 2g.

� At time t, random rewardY (i )
t is observed when armi is

pulled.
� A policy � is a sequence� 1; � 2; : : : 2 f 1; 2g, which

indicates which arm to pull at each timet.
� Performance: Expected cumulative reward at timen

IE
nX

t=1

Y (� t )
t

� Goal: maximize reward.
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Two armed bandit problem: regret

� Oracle policy� ? = ( � ?
1; � ?

2; : : :) pulls at each timet the
best arm (in expectation)

� ?
t = argmax

i =1 ;2
IE[Y (i )

t ] :

� We measure our performance by theregret

Rn (� ) = IE
nX

t=1

�
Y (� ?

t )
t � Y (� t )

t

�
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Static Environment

� The problem is not new: Robbins ('52), Lai & Robbins
('85)

6 / 32



Static Environment

� The problem is not new: Robbins ('52), Lai & Robbins
('85)

� Key assumption:

Static environment

� i.e., the (unknown) expected rewards� i = IE[ Y (i )
t ] are

constant .
� One way to solve the problem is to use

UpperCon�denceBounds policy.
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Side information
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Side information and covariates

� At time t, the reward of each armi 2 f 1; 2g depends on
a covariate X t 2 X (� (IR d))

Y (i )
t = f (i )(X t ) + " t ; t = 1; 2; : : : ; i = 1; 2:

with standard regression assumptions onf " tg.
� A policy is now asequence of functions

� t : X ! f 1; 2g:

� Oracle policy

� ?(x) = argmax
i =1 ;2

IE[Y (i )
t jX t = x] = argmax

i =1 ;2
f (i )(x)
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Assumptions on the expected rewards

Assume now thatX = [0; 1].

1. Constant: Static model studies by Lai & Robbins:

f (i )(x) = � i ; i = 1; 2 � i unknown

2. Linear: One-armed bandit problem, studied by
Goldenshluger & Zeevi (2008)

f (1) (x) = x � �; i = 1; 2 � unknown

and f (2) (x) = 0 is constant andknown.
3. Smooth: We assume that the functions are H•older

smooth with parameter� � 1:

jf (i )(x) � f (i )(x0)j � L jx � x0j � :

(Consistency studied by Yang & Zhu, 2002)
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Constant rewards

! !"#

! !"#

! !
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One-armed linear reward

! !"#

! !"#

! !

!
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Smooth rewards

! !"#

! !"#

! !
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Nonparametric bandit with covariates
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Two armed bandit problem with uniform covariates

� Covariates:f X tg i.i.d in [0; 1] with uniform distribution

� Rewards:Y (i )
t 2 [0; 1]

IE
�
Y (i )

t jX t ] = f (i )(X t ) t = 1; 2; : : : ; i = 1; 2;

wherejf (i )(x) � f (i )(x0)j � L jx � x0j � ; � � 1; i = 1; 2
� Oracle policy pulls at timet

� ?(X t ) = argmax
i =1 ;2

f (i )(X t )

� Regret

Rn (� ) = IE
nX

t=1

�
f (� ? (X t )) (X t ) � f (� t (X t )) (X t )

�
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Margin condition

Margin condition

IP
�

0 < jf (1) (X ) � f (2) (X )j � �
�

� C� � :

� �rst used by Goldenshluger and Zeevi (2008) in the
one-armed bandit setting

� In the one-armed setup, it is an assumption on the
distribution ofX only

� Here: �xed marginal (e.g. uniform) so itmeasures how
close the functions are
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Margin condition

Margin condition

IP
�

0 < jf (1) (X ) � f (2) (X )j � �
�

� C� � :

� �rst used by Goldenshluger and Zeevi (2008) in the
one-armed bandit setting

� In the one-armed setup, it is an assumption on the
distribution ofX only

� Here: �xed marginal (e.g. uniform) so itmeasures how
close the functions are

Proposition: Con
ict� vs. �

�� > 1 =) � ? is a.s constant on [0; 1]
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Illustration of the margin condition
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Illustration of the margin condition

! !

! ! "

" !
#
"

! !"#

! !"#
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Binning (Exploiting smoothness)

� Fix M > 1. Consider the bins

B j = [ j=M; (j + 1) =M)

� Consider theaverage reward on each bin

�f (i )
j =

1
pj

Z

B j

f (i )(x)dx ;

Z t = j i� X t 2 B j
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Binned UCB

� For uniformly distributedX t , we have

pj = IP( Z t = j ) = IP( X t 2 B j ) = 1 =M

� The rewards are

IE
�
Y (i )

t jZ t = j ] = �f (i )
j t = 1; 2; : : : ; i = 1; 2;

Play UCB on the(Z t ; Yt ); t = 1; : : : ; n
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Binned problem
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Binned problem
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Binned problem
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Binned problem

! !

!! !"#

!! !"#
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Two armed bandit problem with discrete covariates

� Covariates:f Z tg i.i.d in f 1; : : : ; M g

P(Z t = j ) = pj ; t = 1; 2; : : :

� Rewards:Y (i )
t 2 [0; 1]

IE
�
Y (i )

t jZ t = j ] = �f (i )
j t = 1; 2; : : : ; i = 1; 2;

� Oracle policy pulls at timet

� ?(Z t ) = argmax
i =1 ;2

�f (i )
Z t
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Regret

� Regret given by

Rn (� ) = IE
MX

j =1

nX

t=1

� �f (� ? (j ))
j � �f (� t (j ))

j

�
1I(Z t = j )
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Regret

� Regret given by

Rn (� ) = IE
MX

j =1

nX

t=1

� �f (� ? (j ))
j � �f (� t (j ))

j

�
1I(Z t = j )

Idea: play independently for eachj = 1; : : : M
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UCB policy for discrete covariate

� BasedUpper Con�dence Bounds given by
concentration inequalities (Hoe�ding or Bernstein):

B t (s) :=

r
2 logt

s
:

� De�ne the number of timeŝ� prescribed to pull armi and
Z t = j , before timet

N (i )
j (t) =

tX

s=1

1I(Zs = j; �̂ s(Zs) = i ) ;

� Average reward collected at those times

Y
(i )
j (t) =

1

N (i )
j (t)

tX

s=1

Y (i )
s 1I(Zs = j; �̂ s(Zs) = i ) ;
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A �rst bound on the regret

Binned UCB policy: conditionally onZ t = j ,

�̂ t (j ) = argmax
i =1 ;2

n
Y

(i )
j (t) + B t (N

(i )
j (t))

o

Theorem 1. A �rst bound on the regret

Denote by� j = j �f (1)
j � �f (2)

j j.

Rn (�̂ ) � C
MX

j =1

�
� j +

logn
� j

�

Direct consequence of Auer, Cesa-Bianchi & Fischer (2002)
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Margin condition

MX

j =1

�
� j +

logn
� j

�

� The previous bound can becomearbitrary largeif one the
� j ; j = 1; : : : ; M becomes too small.

� Using the margin condition we can make local conclusions
on gaps� j :

Fewj 's such that� j is small
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Upper bound

Theorem 2. A bound on the regret for the binned
UCB policy

Fix � > 0 and0 < � � 1 and chooseM � (n=logn)
1

2� +1 .
Then

Rn (�̂ ) �

8
><

>:

Cn
�

n
log n

� � � (1+ � )
2� +1

if � < 1

Cn
�

n
log n

� � 2�
2� +1

if � > 1
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Suboptimality for� > 1

� If � > 1, the bound becomes

Rn (�̂ ) � C
h
nM � � (1+ � ) + M logn

�

� Minimum for

M �
� n

logn

� 1
� (1+ � )+1

� which yields

Rn (�̂ ) � Cn
� n

logn

� � � (1+ � )
� (1+ � )+1

� Problem is:too many bins. Solution: Online/adaptive
construction of the bins
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Conditional distributions

� The distribution ofY (i ) jX belongs toP = f P� ; � 2 � g,
where� is themean parameter:

� =
Z

xdP� (x)

� Assume that the familyP is such that

K(P� ; P� 0) �
(� � � 0)2

�
; � > 0:

For any�; � 0 2 � � IR
� Satis�ed in particular for Gaussian (location) and

Bernoulli families.
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Minimax lower bound

Theorem 3.
Let �� � 1 and the covariatesf X tg be uniformly distributed
on [0; 1]d. Assume also thatf P (i )

� ; � 2 Im f ( i ) (X )g satis�es
the condition on Kullback-leibler for anyi = 1; 2. Then, for
any policy� ,

sup
f (1) ;f (2) 2 �( �;L )

Rn (� ) � Cn � n� � (1+ � )
2� +1 ;

for some positive constantC.
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Comments

� Same bound as in the full information case (see Audibert
& Tsybakov, 07)

� Gap (of logarithmic size) between upper and lower bound.
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Extensions

� Higher dimensiond � 2, choosek � k1

Rn (�̂ ) � C(d)n
� n

logn

� � � (1+ � )
2� + d

� The lower bound also holds.
� Unknownn: doubling trick
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K -armed bandit

� K -armed bandit problem

IP
�

0 < min
i 6= i ? (X )

jf (i )(X ) � f (i ? (X )) (X )j � �
�

� C� � :

wherei?(x) = argmax1� i � K f (i )(x)

Rn (�̂ ) � CK n
� n

logn

� � � (1+ � )
2� +1
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Conclusion

� We introduced a simple model to handle covariates and
proposed a naive policy.

� It has near optimal rates on the regret
� Same rates as full information case but new techniques.
� Current research"

1. Adaptive partitioning to handle� > 1
2. Use of kernel-type (smooth) regression estimators (�ll

the gap??)
3. Time varying rewards
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